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Abstract

It is well known that one-dimensional (1D) q-space imaging allows retrieval of structural information at cellular resolution. Here

we demonstrate by simulation that boundary morphology of structured materials can be derived from 2D q-space mapping. Based

on a finite-difference model for restricted diffusion, 2D q-space maps obtained from water diffusion inside apertures at various levels

of asperity were simulated. The results indicate that the observed ring patterns (diffraction minima) reveal the boundary profiles of

the apertures but become blurred in the case of significant variation in aperture size. For uniform size distribution of apertures, a

quantitative measure of surface roughness can be established by means of spatial autocorrelation analysis. The results suggest that

2D q-space imaging may allow probing of the boundary morphology of structured materials and possibly biological cells.

� 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

The characterization of heterogeneous systems typi-

cally involves retrieval of local morphology which, in

turn, determines functional behavior. For example, it

has been shown that droplet geometry in oil–water
emulsions is linked to the bulk rheology. Similarly, the

surface properties of the confining pores in porous me-

dia affect fluid transport. In biological systems cell

morphology is largely determined by the cells� function

and interplay with the local environment. Bulk cell de-

formation and surface asperity play an important role in

cell–cell interaction and cell–substrate adhesion [1].

Recent work has shown that cell shape could serve as a
surrogate for classifying the status of disease [2–4]. The

knowledge of the shape and size of these structures,

which are difficult to visualize directly, is therefore of

significant interest.

Previous attempts to quantitatively characterize cell

shapes and boundary roughness relied on either electron

microscopy [1,5] or scattering measurements [6,7], and a

subsequent analysis of the resulting images required the
use of geometric models. These approaches are destruc-

tive, and often demand extensive specimen preparation

and complex image processing procedures. Recently,

NMR microscopy has demonstrated its potential for

cellular imaging (see, for example [8, Chapter 4]). How-

ever, so far, directly resolving cellular structures by

NMR microscopy (k-space imaging) has been hampered

by limited signal–noise ratio (SNR) and the ultimately
achievable resolution may be limited by diffusion [9].

These difficulties can under certain circumstances be

overcome by NMR q-space imaging [10–12], which has

been used extensively to retrieve structural information

from heterogeneous materials. Specifically, it has been

shown that in the presence of confined self-repeating
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structures, the echo attenuation exhibits a diffraction-like
pattern resulting from structural refocusing as water

molecules encounter barriers while diffusing. The merit

of this technique is that, theoretically, a resolution at

0:1–10lm is achievable, thus providing a vehicle for

studying structures not resolvable by conventional k-

space NMR imaging. Pulsed-gradient spin echo (PGSE)

or pulsed-gradient stimulated echo experiments have

been applied to study porous materials and emulsions [8]
and, as well as red blood cells [13,14]. More recently, the

technique has been exploited to obtain water displace-

ment profiles in the central nervous system of small an-

imals [15,16]. Most prior work aimed at either measuring

structure size or regional water displacement profiles was

based on one-dimensional (1D) q-space imaging. Such

experiments, however, are limited in that they cannot

fully characterize structures of lower symmetry.
Recently, it has been shown that by cascading multi-

ple displacement-encoding time intervals (along arbi-

trary q-vector directions) sequentially it is possible to

evaluate the eccentricity of a pore matrix [17]. Likewise,

it has been shown that the dispersion of fluid transport

can be examined on the basis of time-correlated dis-

placement profiles [18]. The objective of the present work

was to assess the feasibility of characterizing cell
boundary roughness by examining the diffraction pattern

obtained from 2D q-space echo attenuation maps. To-

ward this goal, PGSE diffusion simulations have been

performed for diffusion of water confined inside circular,

sinusoidally serrated and fractally serrated aperture ar-

rays. In this context, a numerical method has been de-

veloped to quantitatively evaluate boundary roughness

from an autocorrelation analysis of the 2D q-space maps.

2. Methods

2.1. Generation of aperture array images with various

boundary roughness and size distribution

To simulate biological cells with different levels of
boundary roughness, model images of circular, sinu-

soidally serrated and fractally serrated aperture arrays

were generated. For the sinusoidally serrated aperture,

the aperture radius, R, possesses a sinusoidal depen-

dence on azimuthal angle, h,

RðhÞ ¼ aþ g cosðnhÞ; ð1Þ

where a is the mean radius, g is the perturbational am-

plitude (g � a), and n is an integer that determines the

period of this sinusoidal variation. It is noted that g ¼ 0

generates circular apertures. In addition, circular aper-
tures with fractally serrated boundaries were created

since fractal analysis has been shown to be useful for

assessing cell morphology [2–5]. The concepts of fractals

introduced by Mandelbrot [19] embodies the idea of self-

similarity and underlying order, which suggests a non-
integer fractal dimension, d, that better describes the

signature of complex structures. Here we exploit this

concept to generate apertures whose boundary rough-

ness can be described by a known fractal dimension.

Based on the work by Jaggard et al. [20,21], the band-

limited Weierstrass function was used to define the ra-

dius of a fractally serrated aperture as

RðhÞ ¼ aþ
2r2 1 � bð2d�4Þ� �� �1=2

bð2d�4ÞN1 � bð2d�4ÞðN2þ1Þ½ �1=2

	
XN2

n¼N1

bðd�2Þn cosðbnh þ nnÞ: ð2Þ

There exist (N2 � N1 þ 1) spatial frequency components

in Eq. (2), and their phase relations are determined by a
random variable nn of variance r2. The constant b must

be chosen as an integer greater than unity, since R(h)

must be a periodic function with period 2p in order to be

continuous. To explore the effect of various degrees of

boundary roughness, aperture array images with d ¼ 1:5
and d ¼ 1:99 were created.

Since the characteristic size of biological cells or po-

rous materials is often heterogeneous, the image of cir-
cular apertures with Gaussian size distribution (r=l ¼
10%) was also generated. A specific objective was to

investigate the effect of size inhomogeneity on the

boundary roughness characterization.

2.2. Relationship between echo attenuation and spin

density autocorrelation function

It has been shown that the echo attenuation Eðq;DÞ
and the averaged propagator �PPðR;DÞ are Fourier

transform pairs ([8, Chapter 7])

Eðq;DÞ ¼
Z

�PP ðR;DÞ exp½iq 
 R�dR; ð3Þ

where q ¼ cGd, �PP ðR;DÞ is the averaged propagator, R is

the displacement vector, G is the amplitude of the dif-

fusion sensitizing gradient and d is its duration, and c is

the gyromagnetic ratio. In the case of long diffusion

time, i.e., D � a2=D, where a is the characteristic length

of the structure of interest (here the aperture) and D is
the molecular self-diffusion coefficient, the averaged

propagator has been shown to approach the autocor-

relation function of spin density

�PP ðR;1Þ ¼
Z

qðrÞqðr þ RÞdr; ð4Þ

where qðrÞ is the spin density function. From the Wie-

ner–Kintchine theorem it further follows that the echo

attenuation can be expressed as:

Eðq;1Þ ¼ jSðqÞj2; ð5Þ
where jSðqÞj2 is the Fourier power spectrum of spin

density from which the shape of the apertures can be
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derived without the need to obtain the displacement
image [10]. For example, for a unit circular aperture,

circðrÞ, the 2D Fourier power spectrum would be a

ðjincÞ2 function [22]

circðrÞ � 1; 6 1;
0; r > 1;

�
ð6Þ

jBfcircðrÞgj2 ¼ 2p
Z 1

0

rJ0ð2prvÞdr

����
����
2

¼ J1ð2pvÞ
v

����
����
2

; ð7Þ

where r is the radius, Bfg represents the Fourier–Bessel

transform, v is the radius in Fourier conjugate space,

and J0 and J1 are the Bessel functions of the first kind

with order 0 and 1, respectively.

Since in the limit where D ! 1 jSðqÞj2 ! jSðkÞj2 one

may wonder why the same information could not be

obtained by k-space imaging. However, the latter yields
far less SNR, which results from phase spread across the

entire field-of-view due to spatial encoding. In contrast,

q-space imaging encodes spin displacement, no absolute

spatial information required, thus the phase spread is

limited to local motion (diffusion). Therefore, in q-space

imaging, the trade-off for the loss of phase information

is higher SNR.

2.3. Simulation of 2D q-space echo attenuation maps

q-Space imaging simulations were performed by us-

ing an algorithm developed by Hwang et al. [23]. The

method was based on a finite difference model approx-

imation of the diffusion equation, in which the NMR

signal was calculated for the PGSE sequence at echo

time. A pulse sequence diagram is shown in Fig. 1. This
approach has previously been validated for restricted

diffusion bounded by parallel planes and diffusion

within a sphere, where the numerical results agreed well

with existing analytical solutions.

The model circular, sinusoidally serrated, and frac-

tally serrated aperture arrays, described above, served as

input for the simulations. Each image consisted of a

200 	 200 matrix, with a pixel size of 0:865lm2, cover-

ing a 5 	 5 array of non-permeable circularly shaped
elements of 29.76 lm mean diameter. The interior of the

elements was assumed to be occupied by water while the

interstices were assumed to be empty. The diffusion

sensitizing gradients were oriented along two orthogonal

axes on the image plane (x and y direction). Imaging

parameters were TR/TE¼ 1000/65 ms, d=D ¼ 3=60 ms,

and for the diffusion coefficient of the water a value of

2:5lm2/ms was chosen. The 2D q-space was covered by
stepping diffusion gradients in 16 increments from 0 to

75 G/cm, with a 5 G/cm linear increment for each x and

y direction, resulting in 256 q-space samples covering the

first quadrant of 2D q-space, which suffices for struc-

tures of fourfold symmetry as is the case for circular and

sinusoidally serrated apertures. However, for the frac-

tally serrated apertures having only twofold symmetry,

two adjacent quadrants of q-space must be sampled. The
magnetization was calculated and updated for each time

step (0.04 ms) up to the echo time, and echo magnitude

of the NMR signal, S, was obtained by summing the

transverse magnetization from each pixel. Finally, the

2D q-space echo attenuation map was created by plot-

ting the logarithm of echo amplitude ratio, lnðS=S0Þ,
where S0 is the echo amplitude in the absence of diffu-

sion sensitizing gradient versus q. The q-space quadrants
not sampled were filled by making use of the known

symmetry relationships; yielding a 31 	 31 data matrix.

All diffusion simulations were carried on an Apple

MacIntosh PowerPC G4 computer (800 MHz) with

512 MB memory using a computer program written in C

(CodeWarrior, Metrowerks, Austin, TX, USA), while

simulations of model aperture array images and the

calculations of 2D q-space maps were performed in in-
teractive data language (IDL, Research Systems, Boul-

der, CO, USA).

2.4. Quantification of boundary roughness by autocorre-

lation analysis of 2D q-space maps

In optical experiments, diffraction patterns from a

circular aperture consist of rings (corresponding to dif-

fraction minima and maxima), which are self-repeating

radially, possessing no angular dependence. However, as

the boundary of the aperture becomes rough, the dif-

fraction pattern begins to deviate from this simple be-
havior. We therefore postulate that boundary roughness

of simulated apertures may be quantifiable by spatial

autocorrelation analysis of 2D q-space maps. To this

end, the calculated q-space data were first transformed

from rectangular (qx, qy), to polar coordinates, (qr, qh),

by linear interpolation. This operation resulted in 32

linearly incremented values, increasing radially from 0

to qr max (corresponding to Gr ¼ 75 G/cm), with 64
angular increments, spaced equally between 0 and p
radians. Subsequently, the autocorrelation function,

AFC(l), along the radial direction, was calculated forFig. 1. PGSE pulse sequence used for 2D q-space imaging.
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each specified angle, h, followed by averaging over all
selected angular orientations:

ACFðlÞ ¼ 1

Nh

X
h

XNr�1�l

k¼0

ðrk

(
� �rrÞðrkþl � �rrÞ

,XNr�1

k¼0

ðrk � �rrÞ2

)
; ð8Þ

where, r is the mean of Nr echo-attenuation values at

angle h, l is the lag (l ¼ 0; 1; . . . ;Nr � 2), Nr ¼ 32, and

Nh ¼ 64.

3. Results and discussion

3.1. Model aperture array images and calculated 2D

q-space maps

Figs. 2A–D show model images of arrays with vary-

ing boundary roughness (mean aperture diame-

ter¼ 29.76 lm, pixel width¼ 0.93 lm), along with

calculated 2D q-space maps (Figs. 2F–I), displayed after

interpolation from 31 	 31 to 124 	 124. The rings

(diffraction minima) of the q-space maps at low q-values
reflect the gross shape of the aperture, while the fine

structure is embedded in high q-values. This observation

is analogous to k-space where high k-values delineate

high spatial frequency information. The superimposed

contour plots reveal aperture shape and allow distinc-
tion between circular and sinusoidally serrated apertures

(Figs. 2F and G). For the data of the fractally serrated

aperture array (Figs. 2H–I), the diffraction rings lose

their circular appearance and eventually vanish at high

q-values as a result of loss of structural coherence, al-

though the averaged aperture shape is still evident at the

center of q-space. Further, the superimposed contour

plots indicate increased angular dependence with in-
creasing boundary asperity. However, as the roughness

increases further, the angular dependence is lost, and the

pattern reflects only gross object shape. This finding

agrees with the optical experiments by Kim et al. [21],

who showed that the preferential orientation of diffrac-

tion rings disappears as the aperture�s boundary

roughness increases.

Fig. 2E shows the image of circular array in which the
aperture diameter satisfies a Gaussian distribution

(l ¼ 30:20lm; r ¼ 2:98lm). The corresponding inter-

polated 2D q-space map is displayed in Fig. 2J. The ring

Fig. 2. Array of model apertures (A)–(E) and corresponding simulated

2D q-space maps (F)–(J). Circular (Fig. A, g ¼ 0); sinusoidally serrated

(Fig. B, g=n ¼ 1:48=10); fractally serrated (Fig. C, d ¼ 1:5) and (Fig.

D, d ¼ 1:99), where r=b=N2=N1 ¼ 1:6=2=20=1 and n satisfies a uniform

distribution within [0,1]. The 2D q-space maps (Figs. F–J) have been

linearly interpolated from 31 	 31 to 124 	 124 for display, with qx and

qy values ranging from �958 to 958cm�1.

Fig. 3. (A)–(E) Transformed 2D q-space maps in which horizontal and

vertical axes represent qr [0, qr maxð¼ 958cm�1Þ] and qh ½0; p�. Maps

have been linearly interpolated from 32 	 64 to 128 	 256. (F) Results

of autocorrelation analysis for various boundaries (A)–(E), plotted

with each curve normalized to its maximum value and a unit lag

corresponding to Dqr ¼ 31cm�1.
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pattern is still present; however, significant blurring of

the rings caused by the variation in aperture size is ap-

parent. The q-space map results from the superposition

of the calculated diffraction patterns of each individual

aperture.

3.2. Quantitative analysis of boundary roughness

Fig. 3 shows the transformed diffraction patterns

displayed in polar coordinates. This display mode pro-

vides a different perspective for qualitatively assessing

boundary roughness. The observed dark bands repre-

sent the diffraction minima as a function of polar angle

and radius. For the circular apertures (Fig. 3A), the
dark bands clearly possess no angular dependence, in

contrast to Fig. 3B, showing five isolated patches in the

high q-value region. These diffraction minima corre-

spond to the five angular positions at greatest radial

distance of the sinusoidal aperture in the range of ½0; p�,
as a result of the reciprocal relationship between q-value

and displacement. The emerging dark band is expected

to vary sinusoidally in intensity as q-values increase.
Further, the wavy dark bands shown in Fig. 3C repre-

sent the boundary profile of the fractally serrated aper-

ture. However, no fine structure can be seen in Fig. 3D

due to the very high boundary roughness (d ¼ 1:99).

Similar to Fig. 3A, the dark bands observed for the

circular aperture array with Gaussian size distribution

still preserve independence of polar angle. However, the

heterogeneity in structure size causes significant signal
attenuation in high q-value regions.

The calculated autocorrelation functions, derived

from the q-space data of Figs. 3A–E, are shown in Fig.

3F. The curve with the narrowest width of the first

maximum (following the parent peak) is associated with

the circular aperture. However, as boundary roughness

increases, the peak broadens. In addition, the autocor-

relation plot derived from the data in Fig. 3E indicates
that, when the structure size varies, no second maxi-

mum is present and correlation merely manifests as a

shoulder.

As a possible means to quantitatively characterize

boundary roughness, the slope S between the first min-

imum and second maximum of the autocorrelation

curve was calculated, yielding a roughness index, RI,

defined as RI ¼ 1 � logðS=ScÞ, where Sc represent the

slope calculated for the circular aperture. Table 1 lists

the calculated slopes and roughness indices. Interest-

ingly, the roughness index parallels fractal dimension.

This observation suggests that the calculated autocor-

relation function may provide a measure of self-simi-

larity of the boundary profile at different q-values
(displacement scale). Nevertheless, the current method is

sensitive to the uniformity of structure size and will fail

for significant heterogeneity in structure size.

Recent experimental work on biological cells by q-

space imaging did not involve shape analysis. Torres et

al. [14] applied 1D q-space spectroscopy to erythrocytes

indicates differences in the diffusion–diffraction plots

and a dependence on apparent cell diameter for various
pathological conditions. However, no attempts were

made to derive cell shape from the q-space plots. The 2D

q-space maps could thus potentially be applied to

monitor the morphological variations of cells due to

disease or the changes in the environmental conditions.

For example, axonal swelling observed in spinal cord

injury will cause the rearrangement of intra-axonal and

extra-cellular space. However, significant hurdles will
have to be overcome to apply the q-space method to

biological structures. Among these are membrane per-

meability, size, and orientation distribution of struc-

tures, and interference of structural refocusing from

intra- and extra-cellular restricted diffusion that has

been shown to affect the echo attenuation amplitude

[14,24]. More importantly, the interplay of these effects

needs to be considered carefully when interpreting q-
space data. For example, in the study of yeast cell

morphology, the orientation and size distribution effects

can be separated by a multiple NMR scattering ap-

proach [17]. Clearly, to more realistically assess the

feasibility of the present approach in biological cells, our

current model needs to be refined by including cell

membrane permeability and the contributions from

both intra- and extra-cellular diffusion.

4. Conclusions

Simulations reported in this work suggest that 2D

q-space imaging allows quantitative assessment of

boundary roughness in arrays of apertures of uniform

size distribution. Such information can be retrieved in

Table 1

Calculated slopes and roughness indices from autocorrelation plots

Aperture Circular Sinusoidal Fractal, d ¼ 1:5 Fractal, d ¼ 1:99

Slope, S [	10�2] 2.414 1.699 0.711 0.283

S=Sc
a 1 0.704 0.295 0.117

RIb 1 1.152 1.530 1.932

a Sc is the slope calculated from circular aperture.
bRI ¼ 1 � logðS=ScÞ.

24 C.-L. Chin et al. / Journal of Magnetic Resonance 160 (2003) 20–25



situations where SNR limitations render k-space imag-
ing impractical. The targeted application to biological

cells is complicated by finite permeability of the

boundaries, structural heterogeneity and the presence of

diffusing water in all compartments.
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